HOW TO KNOW IN WHICH LINE ONE CHILD CAN SHOW MAXIMUM ABILITY

SUNIRMAL ROY

Abstract

Mainly nineteen cellular entities take place in mainly thirty chemical reactions in a cell. The cell is divided into two when the cellular entities are doubled at a time. In this way growth process takes place in a living body.

From the solution space of this cell generation it is possible to explain mathematically why the shapes of different species are different and why the shapes in the same species are same.

Relative growth rate of different parts of a body remains the same constant for the same species and these constants are different for different species. This is the cause of the same shape of all living things of the same species. This is verified for some castes of India. Similarities are also found in the ratios among the same type of experts (specially of sports). Observing these similarities in a child it can be predicted in which line the child will show his or her maximum ability.

INTRODUCTION, FORMULATION AND SOLUTION OF THE

PROBLEM

Growth is a basic property of biological species, and growth coupled with cell-divisions leads to an increase in population. In F. Heinmetsl we see that the rate constants K_{1}, K_{2}, K_{n} are taken to be constants throughout the whole generation time of cell. When the value of one rate constant is decreased then other equations will balance it and obviously the value of other rate constants will be changed. Ther efore we cannot use the conception of rate constants. Hence the author has modified the model of F. Heinmets1 in a different way. The author has rearranged the Table asfollows:-

Terminology and Symbols
Pools:-
$P_{e} \quad$ extra-cellular nutrient pool
$P_{i} \quad$ Gener al intra cellular metabolic pool.
$P_{a} \quad$ Amino acid pool for protein synthesis.
$P_{n} \quad$ Nucleotide pool for RNA synthesis.
Enzymes:-
E Total protein.
$E_{n} \quad$ Enzymes which convert internal pool (P_{i})
into RNA
precursors.
$\mathrm{E}_{\mathrm{a}} \quad$ Enzymes which convert internal pool $\left(\mathrm{P}_{\mathrm{i}}\right)$
$E_{p} \quad$ RNA polymerase for messenger RNA (M)
synthesis.

$$
\begin{array}{lc}
& E_{t} \quad \text { Enzymes which convert external pool }\left(P_{e}\right) \\
\text { into internal } &
\end{array}
$$

Rate constant Kn, Ka and Kt determine what fraction of total protein repr esents respective enzymes.

Genes:-
$\begin{array}{ll}\mathbf{G}_{\mathbf{e}} & \text { Genes for messenger RNA (M) synthesis } \\ \mathbf{G}_{\mathbf{p}} & \text { Gene for messenger RNA (M P) synthesis. } \\ \mathbf{G}_{\mathbf{b}} & \text { Gene for the synthesis of RNA fraction }\end{array}$
ribosome.
G \quad Gene for tr ansport RNA (C) synthesis.

M essengers:-

$M \quad$ Messenger (RNA) for protein (E)
synthesis.

M p	M essenger (RNA) for Ep synthesis
B'	RNA fraction of ribosome.
B	Ribosome.
C	Transport RNA
N	Ribosome \& messenger complex for

protein (E) synthesis.
Np Ribosome and messenger complex for Ep
synthesis (template).

I nactive state of N .
N'p Inactive state of NP.

Si Metabolite which converts templates \mathbf{N} and Np into inactive state.

Si' Metabolite which converts inactive template N and NP into active state.

$$
\mathrm{K}_{1} \ldots \mathrm{Kn} \text { various rate constants. }
$$

TABLE -- I

1. $\quad r_{1} x_{1}$ of $E_{p}+r_{2} x_{1}$ of $P_{n}=r_{3} x_{1}$ of $E_{p} P_{n}$
2. $r_{4} x_{2}$ of $B+r_{5} x_{2}$ of $E=r 6 \times 2$ of B
3. $\quad r_{7} x_{8}$ of $G B+r_{8} x_{3}$ of $P n=r_{9} x_{3}$ of
$G B+r_{10} x_{3}$ of B
4. $f_{11} x_{4}$ of $G C+r_{12} x_{4}$ of $P=r_{13} x_{4}$ of $G C+r_{14} x_{4}$ of C
5. $\quad r_{15} x_{5}$ of $G P+r_{16} x_{5}$ of $P=r_{17} x_{5}$ of GP+r ${ }_{18} x_{5}$ of Mp

	6.	$\mathrm{r}_{19} \mathrm{x}_{6}$ of Ge+r ${ }_{20} \mathrm{x}_{6}$ of Ep P $=\mathrm{r}_{21} \mathrm{x}_{6}$ of
Ge+r $22 \mathrm{X}_{6}$		
		of $E p+r_{23} x_{6}$ of M.
	7.	$r_{24} x_{7}$ of $B+r_{25} x_{7}$ of $M=r_{26} x_{7}$ of N.
	8.	$r_{27} x_{8}$ of $B+r_{28} x_{8}$ of $M p=r_{29} x_{8}$ of Np.
	9.	$r_{30} x_{9}$ of $C+r_{31} x_{9}$ of $P=r_{32} x_{9}$ of $C P a$.
	10.	$\mathrm{r}_{33} \mathrm{x}_{10}$ of $\mathrm{N}+\mathrm{r}_{34} \mathrm{x}_{10}$ of CPa $=\mathrm{r}_{35} \mathrm{x}_{10}$ of
${ }^{B+r} 36{ }^{\text {x }} 10$		
		of $\mathrm{C}+\mathrm{r}_{37} \mathrm{x}_{10}$ of
$M+r_{38} \mathrm{X}_{10}$ of B		

$B+{ }_{42}{ }^{x} 11$
11. $r_{39} x_{11}$ of $N P=r_{40} x_{11}$ of $C P a=r_{41} x_{11}$ of
of
$M p+r_{43} x_{11}$ of $C+r_{44} x_{11}$ of Ep
12. $r_{45} x_{12}$ of $M=r_{46} x_{12}$ of Pn.
13. $r_{47} x_{13}$ of $M p=r_{48} x_{13}$ of Pa
14. $r_{49} x_{14}$ of $B=r_{50} x_{14}$ of Pi
15. $r_{51} x_{15}$ of $C=r_{52} x_{15}$ of Pi.
16. $r_{53} x_{16}$ of $E=r_{54} x_{16}$ of $P i$.
17. $r_{55} x_{17}$ of $E p=r_{56} x_{17}$ of Pi.
18. $\mathrm{r}_{57} \mathrm{X}_{18}$ of $\mathrm{Pe}+\mathrm{r}_{58} \mathrm{X}_{18}$ of $\mathrm{Ei}=\mathrm{r}_{59} \mathrm{X}_{18}$ of Pi+r $60 X_{18}$ of Et.
19. $r_{61} x_{19}$ of $\mathrm{Pi}+r_{62} x_{19}$ of $E n=r_{63} x_{19}$ of Pn+r $64 \mathrm{X}_{19}$ of En.
20. $r_{65} x_{20}$ of $P i+r_{66} x_{20}$ of $E a=r_{67} x_{20}$ of $\mathrm{Pa}_{68} \mathrm{x}_{20}$ of Ea.
21. $r_{69} x_{21}$ of $E p+r_{70} x_{21}$ of $C=r_{71} x_{21}$ of

EpC.
22. $r_{72} x_{22}$ of $E+r_{73} x_{22}$ of $P i=r_{74} x_{22}$ of Epi.
23. $r_{75} x_{23}$ of $E p+r_{76} x_{23}$ of $B=r_{77} x_{23}$ of

EpB.

N'p.

Np.
24. $\quad r_{78} x_{24}$ of $N p+r_{79} x_{24}$ of $\mathrm{Si}=r_{80} x_{24}$ of
25. $\quad r_{81} x_{25}$ of $N^{\prime} p+r_{82} x_{25}$ of $\mathrm{Si}=r_{83} x_{25}$ of
26. $r_{84} x_{26}$ of $N+r_{85} x_{26}$ of $S i=r_{86} x_{26}$ of N.
27. $r_{87} X_{27}$ of $N^{\prime}+r_{88} X_{27}$ of $S i=r_{89} x_{27}$ of N.
28. $\quad r_{90} x_{28}$ of $N=r_{91} x_{28}$ of Pi.
29. $\mathrm{r}_{92} \mathrm{X}_{29}$ of $\mathrm{Np}=\mathrm{r}_{93} \mathrm{X}_{29}$ of Pi .
30. $r_{94} x_{30}$ of $P i=r_{95} x_{30}$ of X.

Where $r_{1}, r_{2} \ldots r_{95}$ are constants. The equations of Table 1 are written on the understanding that the quantitative measure of the entities in a reaction are one to another in constant ratios. These constants are r1, r2....etc. which can be calculated. These are independent of the rate constants which are not fixed. Therefore the defect of F Heinmets ${ }^{1}$ is eliminated in this model.

Let the measure of the functional entities.
Ep, Pn, Ep, B', B, C, M, M p, N, N'p, Pa, CPa, E, Pi, EpC, EpB,
Epi, respectively initially be
$x_{31}, x_{32}, x_{33}, x_{34}, x_{35}, x_{36}, x_{37}, x_{38}, x_{39}, x_{40}, x_{41}, x_{42}$, $X_{43}, X_{44}, X_{45}, X_{46}, X_{47}, X_{48}, X_{49}$

Since it is assumed that all functional entities are approximately doubled after one generation time of the cell, ther efore we get the equations of Table 2.

TABLE-2

1. $x_{31}=-r_{1} x_{1}+r_{22} x_{6}+r_{44} x_{11}-r_{55} x_{17^{-r}} 69^{x_{21}}{ }^{-r} 75^{x_{22}}$
2. $x_{32}=-r_{2} x_{1}-r_{8} x_{3}-r_{12} x_{4}+r_{16} x_{5}+r_{46} x_{12}+r_{48} x_{13}+r_{66} x_{19}$
3. $x_{33}=r_{3} x_{1}-r_{20} x_{6}$
4. $x_{34}=-r_{4} x_{2}+r_{10} x_{3}$
5. $\quad x_{35}=r_{6} x_{2}-r_{24} x_{7}-r_{27} x_{8}+r_{35} x_{10}+r_{41} x_{11}+r_{49} x_{14}{ }^{-r} 76 x_{23}$
6. $x_{36}=r 14 \times 4-r 30 \times 9+r 36 \times 1+r 43 \times 11-r 51 \times 15-r 70 \times 21$
7. $x_{37}=r_{23} x_{6}-r_{25} x_{7}-r_{45} x_{12}+r_{37} x_{10}$
8. $\quad x_{38}=r_{18} x_{5}-r_{28} x_{8}+r_{42} x_{11}{ }^{-r} 47^{x_{13}}$
9. $\quad x_{39}=r_{26} x_{7}-r_{33} x_{10}{ }^{-r} 84^{x_{26}}+r_{89} x_{27^{-r}} 90^{x_{28}}$
10. $x_{40}=r_{29} x_{8}-r_{39} x_{11}{ }^{-r} 78 x_{24}+r_{83} x_{25}-r_{92} x_{29}$
11. $x_{41}=r_{86} x_{26}{ }^{-r} 87{ }_{27}$
12. $x_{42}=r_{80} x_{24}{ }^{-r} 81 x_{25}$
13. $x_{43}=r_{31} x_{9}+r_{67} x_{20}$
14. $x_{44}=r_{32} x_{9}-r_{34} x_{10^{-r}} 40^{x_{11}}$
15. $x_{45}=-r_{5} x_{2}+r_{38} x_{10}-r_{53} x_{10}-r_{72} x_{22}$
16. $\quad x_{46}=r_{50} x_{14}+r 2 x_{15}+r_{54} x_{16}+r_{56} x_{17}+r_{59} x_{13}{ }^{-r}{ }_{61} x_{19}{ }^{+r_{91}}{ }^{x_{28}}$
$r_{65} x_{20}+r_{93} x_{29}-r_{73} x_{22}{ }^{-r} 94 x_{30}$
17. $x_{47}=r_{71} x_{21}$
18. $x_{48}=r_{77} x_{23}$
19. $x_{49}=r_{74} x_{22}$

Since $x_{31}, x_{32}, \ldots x_{49}$ are fixed in an individual body and the ratios $r_{1}, r_{2} \ldots . . r_{94}$ can be calculated therefore there are 30 variables x_{1}, $x_{2} \ldots . . x_{30}$, and 19 equations.

There are 30 variables and 19 equations and hence 11 variables can be given arbitrary values satisfying the corresponding equations. Let the solutions make V vector space. Let the solutions of x_{1}, $x_{2} \ldots . . x_{30}$ during the whole life of an individual body make a vector space
S. Then S is a subspace of V. Let the solutions of $x_{1}, x_{2} \ldots . . x_{30}$ (during the whole life) of different organs, tissues, different parts of the body make solution vector spaces $\mathrm{S}_{1}, \mathrm{~S}_{2} \ldots . . .$. etc. Then $\mathrm{S}_{1}, \mathrm{~S}_{2} \ldots . . .$. etc. are subspaces of S and hence subspaces of V. Considering $X_{31}, X_{32} \ldots . . X_{49}$ these subspaces $S_{1}, S_{2} \ldots \ldots . S_{n}$ and hence S can be studied and the relations of different or gans, tissues with each other and with the whole body can be known.

The relative growth of different organs, tissues can be shown as constant for an individual body. For this reason, the individual body remains it's shape unchanged. For another individual body of the same species similarly the solution vector-spaces can be studied which is a subspace of V and similarity of growth and shape of the two individuals of the same species can be explained.

The solution spaces of other individual bodies of other species are also subspaces of V and hence similarities and dissimilarities of different individuals of different species can be studied in this respect.

Growth process remains unstopped throughout the whole life through the cellular division. But when different organs, different parts of the body gets stable size then and when the time of cell division is too much greater than the remaining life time then also the growth of that organ is continued, but the growth of the body is not marked and it seems that growth of that part is stopped.

The equations can be discussed in different way also. The activities of different genes in different organs, different parts of a body are not the same. In one organ one gene can be inactive and in another organ the same can be active. Thus we will get different set of equations for different parts of body and obviously we will get different solution spaces, different nature of different parts. But the cell generation time for all cells of all organs are same though solutions may be different. For this, growth rate of one or gan is same as the growth rate of another organ and relative growth rate of another organs remains the same. This is understood from the experimental results also.

Verification of the constants of relative growth of different parts of 400 human body of different castes and experts of different field, where the parts are shown in Fig 1 (Denote first part by X and second part by Y, lengths are in cm.)

Regression					4.2					
X	Y	X	Y	co-efficient	Kaya					
equation										
b--c	13.3	34	9.89	8.16	b--c	11.8	27.15	2.05	8.12	. 9428
. 6185	$Y=27.214+5.102 x$				$-16.848+3.728 x$					
c--d	34	44.2	8.16	1.26	c--d	27.15	37.5	8.12	9.37	
0.63	$=78.2+(-1) x$. 990	$6.26+1.15 x$				
d--e	44.13	13.3	1.37	9.89	d--e	37.5	11.5	9.37	2.05	
. 188	$=7.28+1.36 x$. $924 \quad 4.20+2.02 x$					
e-f	13.3	34	9.89	8.16	f--g	27.15	37.5	8.12	9.27	
. 618	$=27.21+5.10 x$. 936 6.26 +1.15x					
f--g	34	44.13	8.16	1.37	h--i	40.32	43.25	10.47		
. 645	$=81.53-1.10 x$				6.10	. 93		21.41 +5.41x		
h-i	47.2	44.43	1.55	9.46	i--j	43.25	40.32	6.10		
. 976	$=16.42+5.93 x$				$.93-28.75+1.59 x$					

Conclusion : From the previous experimental result it is seen that the ratios of two organs of the same species are same. Not only that, the ratio of the two or gans for different castes are almost same. From this we can conclude that the cell generation time of cells of any or gan are same, other wise it is not possible.
+.9698328x

We see from the tables of sports there are close

 relations between the lengths of different parts of the bodies of the same type of experts in sports. This is applicable to other type of experts also.Seeing the relations of the lengths of different parts of one child's body it can be predicted in which line the child will show his or her maximum capacity.

REFERENCE

1. Heinmets,F. - Mathematical Modeling in Simulation Process(1970)

